不知道小伙伴們有沒有聽說過汽車的可變懸掛原理?簡單來說,一些高檔汽車為了應(yīng)付不同的路況,可以通過調(diào)整本身系統(tǒng)參數(shù)達(dá)到升高或者降低汽車底盤高度的目的,以獲取更好的通過性或者駕駛體驗(yàn)。
這看似和5G的物理資源與幀結(jié)構(gòu)配置是風(fēng)馬牛不相及,不過小編還是建議閱讀下文之前先在wifi環(huán)境下戳戳看下面的視頻(土豪請隨意),也許對5G的設(shè)計(jì)初衷能有更深入的理解。
LTE中對于OFDM調(diào)制符號(hào)的子載波間隔只有兩種規(guī)定,一種是基于標(biāo)準(zhǔn)循環(huán)前綴(Normal cyclic prefix)模式下的15kHz,另外一種是基于擴(kuò)展循環(huán)前綴(Extended cyclic prefix)模式下的7.5kHz。5G NR中對于OFDM調(diào)制符號(hào)的不同子載波間隔有了新的命名,稱作為參數(shù)集(Numerology),5G NR系統(tǒng)所支持的參數(shù)集如表1所示:
表1 5G NR系統(tǒng)所支持的傳輸參數(shù)集配置
Cyclic prefix | ||
0 | 15 | Normal |
1 | 30 | Normal |
2 | 60 | Normal, Extended |
3 | 120 | Normal |
4 | 240 | Normal |
其中上行參數(shù)以及與載波帶寬對應(yīng)的循環(huán)前綴可由高層參數(shù)UL-BWP-mu和UL-BWP-cp分別進(jìn)行配置,下行參數(shù)以及與載波帶寬對應(yīng)的循環(huán)前綴可由高層參數(shù)DL-BWP-mu和 DL-BWP-cp分別進(jìn)行配置。這些小區(qū)級的公共參數(shù)配置可通過RRC重配信令攜帶下發(fā)。
BandwidthPart.Config information element
-- ASN1START
-- TAG-BANDWIDTH-PART-START
BandwidthPart-Config ::= SEQUENCE {
--FFS: Conditions! What to do when certain fields or the entire bandwidth part isomitted? Assume parameters of the carrier instead?
-- Or use the initialBWP derived fromSIB1 or ServingCellConfigCommon? Or make it mandatory to provide at least oneBWP.
--FFS: How can a BandiwdthPart be changed? Only via synchronousReconfiguration oralso without?
--NOTE: The changes in this section are based on RAN1 agreements (not from theofficial L1 parameter list):
--The bandwidth parts for downlink. (see 38.211, 38.213, section 12)
downlinkBandwidthPartsToReleaseList SEQUENCE(SIZE (1..maxNrofBandwidthParts)) OFBandiwdthPartId OPTIONAL,
downlinkBandwidthPartsToAddModList SEQUENCE(SIZE (1..maxNrofBandwidthParts)) OF BandwidthPart OPTIONAL,
--ID of the downlink bandwidth part to be used upon MAC-activation of an SCell. If not provided, the UE uses thedefault BWP
firstActiveDownlinkBwp-Id BandiwdthPartId OPTIONAL, -- CondSCellOnly
--Corresponds to L1 parameter 'default-DL-BWP'.
--ID of the downlink bandwidth part to be used upon expiry of txxx.
--This field is UE specific. When the field is absent the UE the initial BWP asdefault BWP.
--(see 38.211, 38.213, section 12)
--FFS: May the NW change the default BWP with a regular RRC reconfiguration oronly with Reconfiguration with sync?
--FFS: Whether to add a default uplink BWP
defaultDownlinkBwp-Id BandiwdthPartId OPTIONAL,
--The bandwidth parts for uplink. In case of TDD uplink- and downlink BWP withthe same bandwidthPartId are considered
--as a BWP pair and must have the same center frequency.
uplinkBandwidthPartsToReleaseList SEQUENCE(SIZE (1..maxNrofBandwidthParts)) OF BandiwdthPartId OPTIONAL,
uplinkBandwidthPartsToAddModList SEQUENCE(SIZE (1..maxNrofBandwidthParts)) OF BandwidthPart OPTIONAL,
--ID of the uplink bandwidth part to be used upon MAC-activation of an SCell. If not provided, the UE uses the FFS:default BWP
firstActiveUplinkBwp-Id BandiwdthPartId OPTIONAL,-- Cond SCellOnly
--The duration in ms after which the UE falls back to the default Bandwidth Part.(see 38.321, section FFS_Section)
--The UE starts the timer when it switches its active downlink BWP to a downlinkBWP other than the default downlink BWP.
--The UE restarts the timer to the initial value when it successfully decodes aDCI to schedule PDSCH(s) in its active downlink BWP.
--When the timer expires, the UE switches its active downlink BWP to the defaultdownlink (FFS: and uplink?) BWP.
--FFS: For TDD the UE switches also the paired uplink BWP to the one with thedefaultDownlinkBwp-Id.
--FFS: For FDD the UE switches the uplink BWP?????
--When the network releases the timer configuration, the UE stops the timerwithout swithching to the default (FFS: and uplink?) BWP.
bandwidthPartInactivityTimer SetupRelease{ ENUMERATED {
FFS:Value range }} OPTIONAL, -- Need M
}
BandwidthPart ::= SEQUENCE {
--An identifier for this bandwidth part.
--Corresponds to L1 parameter 'UL-BWP-index'. (see 38.211, 38.213, section 12)
bandwidthPartId BandiwdthPartId,
--Frequency domain location of this bandwidth part as a distance in number ofPRBs in relation to the reference PRB (PRB 0)
--of the associated carrier. Corresponds to L1 parameter 'DL-BWP-loc'. (see38.211, section FFS_Section).
-- Incase of TDD, a BWP-pair (UL BWP and DL BWP with the same bandwidthPartId) musthave the same location (see 38.211, section REF)
--FFS_Value: RAN1 seems to discuss the final range.
location INTEGER(0.. maxNrofPhysicalResourceBlocksTimes4) OPTIONAL,
--Bandwidth of this bandwidth part (see 38.211, section REF)
bandwidth INTEGER(1.. maxNrofPhysicalResourceBlocks) OPTIONAL,
--Subcarrier spacing to be used in this BWP. It is applied to at least PDCCH,PDSCH and corresponding DMRS.
--The values provided here are converted into a subcarrier spacing as indicatedin 38.211, Table 4.1-2.
subcarrierSpacing ENUMERATED {n0, n1, n2, n3, n4} OPTIONAL,
--Indicates whether to use the extended cyclic prefix for this bandwidth part. Ifnot set, the UE uses the normal cyclic prefix.
--Normal CP is supported for all numerologies and slot formats. Extended CP issupported only for 60 kHz subcarrier spacing.
--(see 38.211, section 4.2.2)
cyclicPrefix ENUMERATED { extended } OPTIONAL,
-- Frequency location of the uplink"direct current" frequency.
-- Correspondsto L1 parameter 'UL-BWP-DC'. (see 38.211, section FFS_Section)
directCurrentLocation INTEGER (0..3299) OPTIONAL,-- Cond UplinkOnly
}
BandwidthPartId ::= INTEGER(0..maxNrofBandwidthParts-1)
-- TAG-BANDWIDTH-PART-STOP
-- ASN1STOP
圖1 RRC重配消息攜帶的子載波間隔和循環(huán)前綴參數(shù)配置
UE也可以通過讀取MIB獲取SIB1,Msg2/Msg4的子載波間隔,對于主服務(wù)小區(qū)(初始接入小區(qū)),子載波間隔可選配置分別為載波頻率{15kHz,30kHz,60kHz,120kHz},其中前兩個(gè)參數(shù)配置{15kHz,30kHz}適用于系統(tǒng)載波頻率小于6GHz,后兩個(gè)參數(shù)配置{60kHz,120kHz}適用于系統(tǒng)載波頻率大于6GHz。
對于副載波或者第二小區(qū)組主載波的同步信號(hào)子載波間隔可以通過RRC重配消息攜帶,其中參數(shù)配置{15kHz,30kHz}適用于系統(tǒng)載波頻率小于6GHz,而參數(shù)配置{120kHz,240kHz}則適用于系統(tǒng)載波頻率大于6GHz。
OFDM調(diào)制符號(hào)的頻域子載波間隔設(shè)置與載波頻率是息息相關(guān)的。在固定帶寬下,頻域子載波間隔越小,意味著在子載波間隔內(nèi)并發(fā)傳輸?shù)臄?shù)據(jù)速率越低,對于符號(hào)間干擾(Inter-symbol interference,ISI)的抑制效果越好,而當(dāng)小區(qū)載波頻率越高(>6GHz),帶寬越大時(shí),可以采取更大子載波間隔以減少FFT器件處理復(fù)雜度。
另外,載波頻率越高,對于一些特定場景,例如室內(nèi)等靜態(tài)/低速移動(dòng)性場所等,由于多徑反射帶來的ISI情況相對較輕,更大的子載波間隔的參數(shù)配置也可以滿足適配這樣場景下的數(shù)據(jù)傳輸。
為了支持多種部署模式下的不同信道寬度,5G NR必須適應(yīng)同一部署下不同的參數(shù)配置(如圖2所示),在統(tǒng)一的框架下提高多路傳輸效率,同時(shí),5G NR也能跨參數(shù)實(shí)現(xiàn)載波聚合,比如聚合毫米波和6GHz以下頻段的載波,因而5G NR也具有更強(qiáng)的連接性能。
圖2 5G NR不同子載波間隔參數(shù)配置適配傳輸場景
伴隨著頻域子載波間隔的差異化,采樣頻率也隨之進(jìn)行調(diào)整,相應(yīng)時(shí)域采樣的時(shí)間單位也進(jìn)行了重新定義
其中,,,
定義常量,LTE中的時(shí)域采樣單位,,其中
,。
5G NR中定義的無線幀時(shí)域長度依然為10ms,包含了10個(gè)1ms時(shí)域長度的子幀。每個(gè)10ms無線幀依然可劃分為兩個(gè)5ms半幀。
5G NR根據(jù)實(shí)際的應(yīng)用需求以及場景提出了靈活多變的“微時(shí)隙”的概念,每個(gè)子幀中可以包含多個(gè)時(shí)隙。根據(jù)子載波間隔,定義一個(gè)子幀中的時(shí)隙數(shù)為,而一個(gè)無線幀的時(shí)隙個(gè)數(shù)為,每個(gè)子幀中包含的OFDM符號(hào)為,不同循環(huán)前綴格式下每個(gè)時(shí)隙中所包含的OFDM符號(hào)個(gè)數(shù)
分別由表2和表3進(jìn)行定義:
表2 標(biāo)準(zhǔn)循環(huán)前綴格式下系統(tǒng)幀相關(guān)參數(shù)配置(一個(gè)時(shí)隙包含OFDM符號(hào)數(shù) /一個(gè)無線幀包含的時(shí)隙個(gè)數(shù)/一個(gè)子幀包含時(shí)隙數(shù))
0 | 14 | 10 | 1 |
1 | 14 | 20 | 2 |
2 | 14 | 40 | 4 |
3 | 14 | 80 | 8 |
4 | 14 | 160 | 16 |
5 | 14 | 320 | 32 |
表3 擴(kuò)展循環(huán)前綴格式下系統(tǒng)幀相關(guān)參數(shù)配置(一個(gè)時(shí)隙包含OFDM符號(hào)數(shù)/一個(gè)無線幀包含的時(shí)隙個(gè)數(shù)/一個(gè)子幀包含時(shí)隙數(shù))
2 | 12 | 40 | 4 |
5G NR中沒有專門針對幀結(jié)構(gòu)按照FDD或者TDD進(jìn)行劃分,而是按照更小的顆粒度OFDM符號(hào)級別進(jìn)行上下行傳輸?shù)膭澐?,一個(gè)時(shí)隙內(nèi)的OFDM符號(hào)類型可以被定義為下行符號(hào)(D),靈活符號(hào)(X)或者上行符號(hào)(U)。在下行傳輸時(shí)隙內(nèi),UE假定所包含符號(hào)類型只能是D或者X。而在上行傳輸時(shí)隙內(nèi),UE假定所包含的符號(hào)類型只能是U或者X。
表4 時(shí)隙格式類型
<td width="38" valign="top" style="margin: 0px; padding: 0px 7px; word-break: break-all; border-top-style: none; border-left-style: none; border-rig
Format | Symbol number in a slot | |||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
0 | D | D | D | D | D | D | D | D | D | D | D | D | D | D |
1 | U | U | U | U | U | U | U | U | U | U | U | U | U | U |
2 | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
3 | D | D | D | D | D | D | D | D | D | D | D | D | D | X |
4 | D | D | D | D | D | D | D | D | D | D |
上一篇文章 :
5G新在哪兒(6)-非獨(dú)立組網(wǎng)與獨(dú)立組網(wǎng)模式下小區(qū)選擇
下一篇文章 :
【歐源通科技】漸漸消失的IP
力元電機(jī)專注直流減速馬達(dá),微型直流馬達(dá),減速馬達(dá),永磁直流馬達(dá),小馬達(dá)等微電機(jī)馬達(dá)定制。微型馬達(dá),產(chǎn)品性能穩(wěn)定,規(guī)格齊全,交付快,歡迎來電咨詢合作! 歐源通科技有限公司 | | Copyright ? 2012-2025 歐源通科技版權(quán)所有 |